UNIT IV

4.1 DIGITAL COMPONENTS: INTEGRATED CIRCUITS

- Integrated circuit(IC) is a small silicon semiconductor crystal is called a chip
- The various gates are interconnected inside the chip to form the required circuit.
- Each IC has a numeric designation printed on the surface of the package for identification.
- Small Scale Integration (SSI) devices contain several independent gates in a single package.
- The inputs and outputs of the gates are connected directly to the pins in the package.
- Medium Scale Integration (MSI) devices have a complexity of approximately 10 to 200 gates in a single package.
- Large Scale Integration (LSI) devices contain between 200 and few thousand gate in a single package
- Very Large Scale Integration (VLSI) devices contain thousands of gate in a single package

4.1.1 DECODERS

- A *decoder* is a combinational circuit that converts binary information from '*n*' input lines to a maximum of 2ⁿ unique output lines.
- It is used to decode the binary information to some other number system (decimal or hexadecimal).

A 2 to 4 line Decoder

		Inputs	Outputs									
А	В	С	D ₇	D ₆	D ₅	D ₄	D3	D ₂	D ₁	D ₀		

0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Truth Table for 3 to 8 line decoder

- Here, a 3 bit binary information is decoded into eight outputs.
- The three NOT gates or invertors on the input side give the complement of the inputs.
- The eight AND gates are used to active the outputs 'High'.
- It is also called as binary to octal decoder.
- The applications of decoder is binary to octal conversion.
- It is also used to display the letters of the alphabet.
- Light Emitting Diodes (LEDs) are used as light source for the read-out display.

4.1.2 ENCODERS

- It is just reverse process of decoding.
- This changes decimal signals into equivalent binary signals.
- It is also called as coder.
- It has 2ⁿ or less input lines and n output lines.
- The octal to binary encoder has 8 inputs and three outputs.
- It is constructed using three OR gates.

Octal to binary encoder

				C	Outpu	ts				
D7	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	А	В	C
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Truth Table for Octal to binary encoder

- Decimal to BCD encoder can be constructed using four OR gates.
- This encoder has 10 input lines and four output lines.
- The switches S₀ to S₉ are push buttons.
- When push-button S₂ corresponding to decimal number 2 is pressed, the OR gate for output B has a high input, therefore the output BCD word is given by
 - \circ D C B A = 0 0 1 0.

Decimal to BCD encoder

4.1.3 MULTIPLEXERS

• It is also known as data selector and abbreviated as MUX.

- It is a combinational logic circuit.
- It accepts several data inputs and selects only one at a time and directs it to a single output line.

4-to-1 line Multiplexer

Block Diagram of MUX

Se	lect	Output
S_1	S ₀	Y
0	0	l _o
0	1	1 ₁
1	0	1 ₂
1	1	۱ ₃

Function Table

- In 4 –to-1 line multiplexer, there are four inputs I₀, I₁, I₂ and I₃ which is applied to one input of an AND gate.
- The two select inputs S_1 and S_2 are decoded to select a particular AND gate.
- The outputs of the AND gates are applied to the single OR gate to provide the single output.
- When $S_1 S_0 = 11$, the AND gate associated with I_3 has two of its input equal to 1. The third input is connected to I_3 . The other three AND gates have atleast one input equal to zero. So the OR gate output is now equal to the value of I_3 , thus providing a path from select input to output.
- The size of the multiplexer is given by 2ⁿ to 1 line, where 2ⁿ stands for the number of the input lines and n stands for the number of select inputs.

4.1.4 DEMULTIPLEXERS

- It is also known as data distributor and abbreviated as DEMUX.
- It does the reverse process of the multiplexer.
- It takes in single input and distributes several outputs.
- It receives single line information and transmits it to one of 2ⁿ possible output lines.
- The select input will determine or decide to which output the data input will be transmitted.

- There is a single input line I which is connected to all the AND gates.
- Three select inputs are used , so n=3.
- There must be 2^n output lines ($2^3=8$).
- The select inputs enable one of the eight AND gates.
- Demultiplexers are useful when information from one source is to be fed to several places.

Inputs	Inputs					Outputs									
Data Input			Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀					
L	S_2	S_1	S ₀												
Ι	0	0	0	0	0	0	0	0	0	0	Ι				
Ι	0	0	1	0	0	0	0	0	0	Ι	0				
Ι	0	1	0	0	0	0	0	0	Ι	0	0				
Ι	0	1	1	0	0	0	0	Ι	0	0	0				
Ι	1	0	0	0	0	0	Ι	0	0	0	0				
Ι	1	0	1	0	0	Ι	0	0	0	0	0				

Ι	1	1	0	0	Ι	0	0	0	0	0	0
Ι	1	1	1	Ι	0	0	0	0	0	0	0

Truth Table for 1 to 8 line Demultiplexer

4.2 REGISTERS

- Register is a group of cascaded flip-flops for storing binary information momentarily.
- They are used in microprocessors and digital computers.
- They are used for transfer of binary information and for storage of binary data which is being decoded in digital systems.

4.2.1 SHIFT REGISTERS

- Shift register is a register, which is used to assemble and store the information arriving from a serial source.
- A shift register can shift binary word either to the left or to the right.
- It consists of cascaded flip-flops, with the output of each flip-flop connected to the input of the next flip-flop.
- A common clock pulse is applied to all the flip-flops, clocking them synchronously and causing the shift from one stage to the next stage.
- The shift register is a synchronous sequential circuit.
- When a shift register is used to move the stored bits to the left, it is called shift-left register.
- When a shift register is used to move the stored bits to the right, it is called shift-right register.

SHIFT-LEFT REGISTER

Shift-left register using D flip-flop

- In shift-left register, the data input D_{in} is applied to flip flop A.
- A common edge triggered clock pulse is applied to all the four flip flops.
- The data input D_{in} sets up the first flip-flop A, whose output Q_0 sets the second flip-flop, whose output Q_1 sets the third flip-flop C and so on.

- On arrival of the next positive clock edge, the stored bits move one position to the left.
- Initially Q = D C B A = 0 0 0 0 and $D_{in} = 1$
- The first rising clock edge will set the right flip-flop A and stored word becomes Q = D C B A= 0 0 0 1
- Now the input to the D₁ to the flip-flop B is equal to '1'. On arrival of the next positive clock edge, flip-flop B sets and the contents of the register becomes Q = D C B A = 0 0 1 1
- The third positive clock edge gives the output Q = D C B A = 0 1 1 1

Shift-left register using JK flip-flop

- The data input X is connected to J input and \overline{X} obtained after inversion is connected to K input.
- The clock pulse is applied at the T inputs of all the flip-flops simultaneously.
- When the first clock pulse arrives, the data inputs X and \overline{X} are shifted to the output of the flip-flop A.
- Thus on arrivals of each clock pulse, the data are shifted to the output of the next flip-flop.

SHIFT-RIGHT REGISTER

Shift-right register using D flip-flop

- The connection is similar to shift-left register with only difference that the data input is connected to D flip-flop and output is taken from A flip-flop.
- A common edge triggered clock pulse is applied to all the four flip flops.
- The output Q_3 of flip-flop D, sets the input for the prededing flip-flop C.
- When the positive clock edge arrives, the stored bit move one position to the right.
- Initially Q = D C B A = 0 0 0 0 and $D_{in} = 1$

- The first rising clock edge will set the left flip-flop D and stored word becomes Q = D C B A= 1 0 0 0.
- The second positive clock edge gives the output Q = D C B A = 1 1 0 0
- The third positive clock edge gives the output Q = D C B A = 1 1 1 0
- The fourth positive clock edge gives the output Q = D C B A = 1 1 1 1
- The word is stored and remains unchanged till $D_{in} = '1'$.

Shift-right register using JK flip-flop

- The data input X is connected to J input and \overline{X} obtained after inversion is connected to K input.
- The clock pulse is applied at the T inputs of all the flip-flops simultaneously.
- When the first clock pulse arrives, the data inputs X and \overline{X} are shifted to the output of the flip-flop D.
- Thus on arrival of each clock pulse, the data are shifted to the output of the next flip-flop.
- Four types of shift registers are
 - 1. Serial in serial out shift registers
 - 2. Parallel in serial out shift registers
 - 3. Serial in parallel out shift registers
 - 4. Parallel in parallel out shift registers
 - 5. Parallel in parallel out bi-directional shift registers

4.3 COUNTERS

- The counter has the ability to count.
- It is an important and useful subsystem of a digital system.
- A counter is a group of cascaded flip-flops to store more binary information.
- A counter is a register, which is capable of counting the number of clock pulses, which has arrived at its clock input.
- It is used in control systems, computers, electronic and scientific instruments.
- The application of counters includes counting the occurrence of events, frequency division, time sequence of operation of equipments and digital systems.
- Two types of counters are
 - i) asynchronous or ripple counter
 - ii) synchronous counter.

ASYNCHRONOUS COUNTER

- It is an asynchronous sequential circuit.
- All the flip-flops in an asynchronous counter are not under the control of same clock pulse.
- An n-bit binary ripple counter can count upto a maximum of 2ⁿ states.
- A ripple counter is a basic and simple counter.
- It has limitation on speed of operation.

3 bit binary ripple counter

- In 3 bit binary ripple counter, three JK flip-flops are connected in cascade.
- It can count upto 2³ states i.e 8 states.
- Initially all the four flip-flops A,B and C are in logic '0' state.
- A clock pulse is applied to flip-flop A only, which makes Q_A to change from logic 0 to logic 1 state. Other flip-flops B and C do not change their state. After the application of the clock pulse to the clock input, the counter reads.

•
$$Q = Q_C Q_B Q_A = 0 \ 0 \ 1$$

- When second clock pulse is applied to flip-flop A, output Q_A changes state from logic 1 to logic 0. Due to this state change, a negative going pulse created at Q_A , which is connected to clock input of the flip-flop B. This pulse triggers the flip-flop B and changes the state of Q_B from 0 to 1. Flip flop C do not change its state. Now the counter reads $Q = Q_C Q_B Q_A = 0.1 0$
- The counter will continue to count the input clock pulses in the binary form upto the state till Q_C , Q_B and Q_A all become high. That is the counter reads $Q = Q_C Q_B Q_A = 1 \ 1 \ 1$, which in decimal means that it will count upto 7 clock pulses.
- On the arrival of the 8th clock pulse, all the three flip-flops will go to '0' and the counter will once again repeat its counting from 000 to 111 (from 0 to 7).

SYNCHRONOUS COUNTER

- It is an synchronous sequential circuit.
- All the flip-flops in an asynchronous counter are under the control of same clock pulse.
- It is used to eliminate the cumulative flip-flop delays.
- Two methods are used to control the flip-flop in synchronous counter.

- one with ripple carry
- one with parallel carry
- All the flip-flops in synchronous counter change their state simultaneously and thus They are capable of operating at higher frequencies and speed.
- They are more complicated and require more components.

(i) Four-bit synchronous counter with serial or ripple carry

- Four-bit synchronous counter used positive edge triggered JK flip-flop with serial or ripple carry.
- It requires two input logic gates.
- On the arrival of clock pulse, all the flip-flops changes their state simultaneously.
- Inputs of flip-flops are

(ii) Four-bit synchronous counters with parallel carry or look-ahead carry

- Here, the state of the flip-flop is fed parallel to all succeeding flip-flops.
- The input clock pulse drive all the flip-flops in parallel.
- The flip-flop A has its J-K inputs to a high voltage level '1' and it responds to each positive clock pulse.
- The remaining flip-flops respond to the next positive clock edge only if all the lower bits are '1's.
- Inputs of flip-flops are

$$\begin{array}{l} J_A \! = \! K_A \! = 1 \\ J_B \! = \! K_B \! = \! Q_A \\ J_C \! = \! K_C \! = \! Q_A \ast Q_B \\ J_D \! = \! K_D \! = \! Q_A \ast Q_B \ast Q_C \end{array}$$

4.4 MEMORY UNIT

- Memory stores such binary information as instructions and data, and provides that information to the microprocessor whenever necessary.
- To execute programs the microprocessor reads instructions and data from memory and
- performs the computing operations in its ALU section.
- Results are either transferred to the output section for displayer stored in memory for later use. The memory block has two sections
- Read only memory (ROM)
- Read/Write memory (R/WM), popularly known as Random-Access memory (RAM).
- The ROM is used to store programs that do not need alterations. The monitor program of a single board microcomputer is generally stored in the ROM.
- This program interprets the information entered through a keyboard and provides equivalent binary digits of the microprocessor.

MAIN MEMORY

- The main memory is the central storage unit in a computer system.
- •

t is a relatively large

and fast memory used to store programs and data during the computer operation.

- The principal technology used for the main memory is based on semiconductor integrated circuits.
- Integrated circuit RAM chips are available in two possible operating modes, static and dynamic.
- The static RAM consists essentially of internal flip-flops that store the binary information.
- The stored information remains valid as long as power is applied to the unit.
- The dynamic RAM stores the binary information in the form of electric charges that are applied to capacitors.
- •

he capacitors are provided inside the chip by MOS transistors.

- The stored charges on the capacitors tend todischarge with time and the capacitors
- must be periodically recharged by refreshing the dynamic memory.
- Refreshing is done by cycling through the words every few milliseconds to restore the decaying charge.
- The dynamic RAM offers reduced power consumption and larger storage capacity in a single memory chip.

it is necessary to combine a number of chips to form the required memory size.

• To demonstrate the chip interconnection, we will show an example of a 1024 * 8 memory constructed with 128 * 8 RAM chips and 512 * 8 ROM chips.